Optical flow for self-supervised learning of obstacle appearance
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Abstract—We introduce a novel setup of self-supervised
learning (SSL), in which optical flow provides the supervised
outputs. Optical flow requires significant movement for obstacle
detection. The main advantage of the introduced method
is that after learning, a robot can detect obstacles without
moving - reducing the risk of collisions in narrow spaces. We
investigate this novel setup of SSL in the context of a Micro
Air Vehicle (MAV) that needs to select a suitable landing place.
Initially, when the MAV flies over a potential landing area, the
optical flow processing estimates a ‘surface roughness’ measyr
capturing whether there are obstacles sticking out of the landing
surface. This measure allows the MAV to select a safe landing
place and then land with other optical flow measures such Optical Flow Texton Method
as the divergence. During flight, SSL takes place. For each
image a texton distribution is extracted (capturing the visual l

appearance of the landing surface in sight), and mapped to the
current roughness value by a linear regression function. We first
demonstrate this principle to work with offline tests involving

images captured on board an MAV, and then demonstrate the

principle in flight. The experiments show that the MAV can
land safely on the basis of optical flow. After learning it can also I e

€* Learning f(q)

successfully select safe landing spots in hover. It is even shown
that the appearance learning allows the pixel-wise segmentation
of obstacles. |

. INTRODUCTION

For many missions, Micro Air Vehicles (MAVs) will have Fig. 1: Overview of the novel self-supervised learning (5SL
to land autonomously. Therefore, MAVs need to identify aetup. The MAV starts flying using a roughness meastire
safe place which is defined in this study as a relatively flagxtracted from optical flowl¢ft). A function is learned that
surface with an allowable inclination and most importaiitly maps appearance features frorstidl image to the roughness
is free of any obstacles underneath the vehicle. Many exjsti ¢ (right). After learning, the MAV can determine whether
approaches use active sensors such as a laser range fintlere are obstacles below based on a still image, allowing
or use multiple cameras [1], [2], [3], [4], [5] to estimatelanding site selection in hover.
the distance to many points on the landing surface. While
they can provide accurate and redundant measurements, thei
perception range is limited and they are heavy and costly f%r

. oneybees perform a grazing landing by keeping the ventral
small MAVs. Therefore, use of a monocular camera is prefer- o - .
able as it is light-weight and has low power consumption. %Iow (lateral velocities divided by height) constant [1QJ1],

The current approaches using a single camera for a[.ll-z]’ [13]. This approach guarantees a soft Ignding but does
tonomous landing are mainly visual Simultaneous Localizag,:)ut diceosntr?(lj 'tss\é?jrtt'ga:;grlﬂii_gng ec?l (\év";ih r:th ?jti;/ige:derg
tion and Mapping (SLAM) and bio-inspired solutions usm%ertical \F/)eloe:it ) [14], [15], [16] 9 y
optical flow. The first method locates all the desired feature y e ' ) ) ]
in the field of view [6], [7] and determines the vehicle’s !ndeed, the bio-inspired approach using optical flow is
location and 3D-structure of the landing surface at thesgH'ently a major research topic in autonomous landing of
points. Although its computational efficiency and accurac)/AVSs [17], [18], [19]. However, in order to sense the obsta-
have been improved over the years [8], [9], it still use§!es with optical flow during landing, the vehicle obviously
more computational resources than strictly necessary. TREEUS to move. It would be both safer and more efficient to
second method is inspired by flying insects, which heavilfétect the obstacles underneath the vehicle in hover.
rely on optical flow for navigation. Biologists first foundath A possible solution for this is to learn the visual appear-
ance of the obstacles, preferably without human supervisio
*All authors are with the Micro Air Vehicle laboratory of Self—supervised IearningSSL) can be used to this end
the Faculty of Aerospace Engineering, Delft University ofchi- . L. ’
nology, 2629HS Delft, The Netherlands. w. ho@UDel ft . nl , Previous work focused on autonomous driving cars, where
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outputs to learn the appearance of obstacles on the road [2i8]implemented to compute the optical flow. Note that since
[21]. In [22], optical flow was used for tracing back thethe computation of optical flow is not the primary focus of
obstacles in time when they are far away. The superviseldis paper but rather the concept of using it with SSL, other
outputs were still provided by stereo vision and bumpers. methods computing optical flow can also be used.

Here we propose using optical flow for the SSL of obstacle
appearances to identify a safe landing place for MAVs. An vy
overview of the proposed method is shown in Fig. 1. The 14.
major difference with previous work on SSL is that it is the S
first time optical flowis used for generating the supervised ﬂ
outputs. Additionally, it is applied to a flying vehicle that S
moves in 3-D space and thus has a completely different
viewpoint than the cars in previous research[20], [21]].[22
This heavily reduces the prior on where obstacles can be
located.

we will .showlthat thls novel setup of SSL. permits an .MAVFig. 2: Left A pin hole model.Right An inclined ground
to start flying with optical flow based behaviors (necessitat .

N surface with slopey.
movement), but that after a while it can land completely
based on the visual appearance of obstacles in still images . . )
(in hover). The remainder of the article is set up as follows; BY ré-writing (1) and (2) into matrix form as shown
In Section II, we describe the proposed vision algorithn?€/OW: the parameter vectors, = [pu1, puz: Pus, Put; Pus]
estimating surface roughness @ndé) to detect obstacles. @ Pv = [Pu1:Dva, Pus, pua, pus] €an be estimated using
Section Il presents the results and discussion of botrcabti & maximal likelihood linear least squares estimate .Wlthlln
flow- and appearance- based landing experiments. Theﬁl]'robust random sample consensus (RANSAC) estimation
Section IV explains generalization of our SSL method t@rocedure [28]:
differept enviror?ments.. Finally, a conclusion with future u=pull,z,y, 2%, zy]7, (3)
works is drawn in Section V.

2 T
v=pv[l, 25,972y (4)
Il. SELF-SUPERVISED LEARNING OF OBSTACLE ) S ) )
APPEARANCE USING OPTICAL FLOW The estimated parameters provide important information

. . . . _._for bio-inspired navigation: (a) ventral flowy( = S Wy =
In this section, we explain (a) a computationally efficient P d @ b= Pus, wy

) . _ : = h01), (b) divergence p £ 24 4+ v — p 5 + py3), and (c
method to estimate information from the optical flow f|eldp ). (0) g 0= 5 gy — Pu2 TP 3) ©

. . L . time-to-contact £ = 2/D).
Wh'Ch will allow the MAV to determine if a landing spot . Lastly, the estimation using RANSAC returns the number
is safe, and (b) a SSL method of obstacle appearance us

this inf i Y¥inliers and the fitting error. If there are obstacles stigk
IS Information. out of the landing surface, their optical flow vectors willtno

A. Surface roughness estimation from optical flow field ~fit with the second assumption of a planar landing surface.

The visi loorith d to determi fThis leads to a higher fitting erroe* which can thus be
€ vision algornthm we proposed 1o determine a sa ﬁ]terpreted as a measure @frface roughness

landing spot is based on early findings in [23]. The algorithm
was developed in previous research [24] to estimate theslop
of the landing surface by assuming that (a) a pinhole camera
model pointing downward is used, (b) the surface in sighwith ¢, and e, sum of absolute errors of the RANSAC
is planar, and (c) the angular rates of the camera can kstimation in (3) and (4) divided by the number of tracked
measured and used to de-rotate the optical flow. Under theserners. Thus, we can usé¢ to detect obstacles near the
assumptions, the equation of the optic flow vectors can lyground surface by fitting the optical flow field. Note that
expressed as follows: (1) and (2) can be simplified by neglecting the second-order
terms if the MAV only moves laterally. Therefore, linear
fitting of the optical flow field can be used. To obtain a
0 = —wy + wyaz + (wyb + w.)y — bo,y? — aw,ay, (2) unique solution of either (3) or (4), we need at least three
tracked features.

€ =€, + €, %)

U= —w; + (Wea + w,)x + wby — aw,z? — bw.zy, (1)

wherew andv are the optical flow vectors im andy image . .

coordinates system, respectively shown in Fig.c2. = B. Self-supervised learning of obstacle appearance

Va/h, wy, = V,/h, andw, = V. /h are the corresponding Having to move close to obstacles in order to detect them
velocities in X, Y, and Z direction scaled with respect represents a risk. It would be desirable to detect obstacles
to the heighth. Slope angles of the surface, and 5 are while hovering. To do this, the outputs from optical flow
the arctangent of: and b, respectively in the equations. algorithm can be used as a supervised output for a self-
In this work, the sparse corner detection method usingupervised learning (SSL) method that maps visual appear-
FAST [25], [26] integrated with Lucas-Kanade tracker [27]ance features to a roughness value. To illustrate the whole



process flow, an overview of the proposed SSL algorithmeighbor, and Pseudo-inverse regression methods compared
is presented in Fig. 1. Since the left part of the figure hawith the ¢* in Fig. 4 while their normalized Root Mean
been described in Section II-A, this section will discusgeno Square Errors (RMSE divided by the range of the regressand)

about the right part of the figure. on the test set are: 10%.
1) Texton distributions for appearance representatidm: 250
this study the visual appearance is described usinggttten —cF
—é:pinv

method [29], based on the extraction of small image patches. 200r |Z&:FC
With this method, first aictionary is created consisting of 150f =€linear
textonsi.e., the cluster centroids of the small image patches.\w
For our implementation, we follow our previous work in *u:
[30], and learn the dictionary with Kohonen clustering [31] 50¢
After creation of the dictionary, an image’s appearance can
be represented as a texton distribution. To this end, a numbe
of image patches are randomly extracted from an image and '500 200 400 600 800 1000 1200
per patch the closest texton can be added to a corresponding Time (s)

bin in a histogram. By normalizing it with the numberFig. 4. Comparison of the roughness estimated using
of patches, a maximum likelihood estimate of the textotinear, k-nearest neighbor (knn), and Pseudo-inverses)pin
probability distribution is obtained. In previous resdgrthe regression methods with the roughnessestimated from
texton method has been used to calculate the appearanggical flow algorithm.

variation cue [32] and to learn how to recognize heights and

obstacles [30] but it was never applied to SSL. Since they all give reasonably good results, the linear
regression method is used for this study, due to its sinplici

— . . .. . .
[:E' o “ ‘1 *'P N L a8 & omle and computational efficiency. After obtaining the textos-di
- ‘§ BNE N [mage Pateh) 25 o0 Uig tributionsq of m number of visual words and the roughness
o o\ o 13 14 15 16 17 l 18 . . . .
o L oo === oEiE e* for n images, a linear regression model expressed in (6)
I w ®E O W A can be trained.
gl J u | |} |} " m . )
- Image Textons f(@) = p1gin + .+ pmdim + A, i=1,...n (6)
.S 0.4 X . . .. .
E where is a bias ang are the regression coefficients, which
E o3 are optimized so thaf(q) ~ €*.
Z
=7 I1l. RESULTS AND DISCUSSION
% o1 I I Before doing the experiment, a learning procedure needs to
S 00Il B = = . B E<- be performed: (a) training of a texton dictionary in the MAV
[=W

Textons by flying around the landing area, (b) collecting a dataset of
Fig. 3: Texton Method: A number of image patches istexton dlstnbutuzns qomputgd based on thg tralned.dlatrpn
) and roughness* using optical flow algorithm during the
randomly selected from an image. The patches are then com- . . . .
. o - -second flight, and (c) learning the regression model using
pared to textons in a dictionary to form a texton probablllt){he datasat
distribution of the image.

A. Experimental platform and processing time

2) Predicting the roughness value with appearan&ec- A Parrot AR.Drone 2.0 is used as a testing platform for
ondly, we learn the texton distributions representing aisu this study. It uses 1GHz 32 bit ARM Cortex A8 processor
appearances of obstacle/ non-obstacle surfaces whichecanand runs Linux operating system. It is equipped with a
differentiated by the roughness values from a set of onéboaglownward-looking camera running up 60 fps which is of
images. In order to do this, we can use a regression methoda@rticular interest to us for the landing purpose.
model a relationship between the texton distributionsrggeg  Instead of using the original Parrot AR.Drone program, an
sors) and the roughness (regressand). To show feasibility open-source autopilot software, Paparazzi Autopilot isdus
and reliability of the relationship, various regressiortinoels because it allows us to have direct access to the sensors and
(such as Linear, Ridge, LASSO, Kernel smoother, Pseudgontrol the MAV. We created a computer vision module in
inverse, Partial least squares, k-nearest neighbor gigrsy Paparazzi Autopilot to capture and process images on-board
were tried out to perform the learning usimgtools [33] the MAV and test our proposed algorithm in flight tests.
in MATLAB. A dataset consists of the texton distributions To examine the efficiency of the both algorithms, we
and the roughness* are randomly sampled to g&0% measured the times taken by each process of the algorithms.
training set and the rest for test set. Since the results fromlAI h , _ . L
the regression methods are almost the same, we only plot tg} though we have chosen for this multi-phase learning proceéh this

) ; ) ﬁcle, there is no fundamental reason prohibiting theediffit phases to
results of roughnesé estimated using the Linear, k-nearesbe executed simultaneously during operation.



Since these times depend on the number of samples, W&o account the presence of an obstacle in the center of the
computed the average processing time required for eack stagage. Therefore, we selected the image patches for bgildin
of both algorithms divided by number of samples used athe texton distribution in &60x 120 pixel region in the image
shown in Table I. In our experiments, the maximum numbetzenter only. Fig.6 shows a comparison between roughness
of corners in optical flow algorithm and the number ofe* from optical flow algorithm andé from SSL method
samples used in SSL are both set to 25. Note that this valwdile hovering. This figure shows that the SSL method is
can be tuned to include more or less information from thable to detect obstacles by giving higher valueé¢oivhile
images, however, higher value needs more computatiorthle MAV is hovering above the obstacles. In contrast, the
time. The measured processing times (see Table I) show ttegdtical flow algorithm mostly gave faulty classificationsedu
both algorithms are computationally efficient and manage to the absence of lateral movement although there were some
be executed on-board the MAV. movements when approaching and leaving the waypoint

o which gave higher value of* as shown in Fig.6. The results
TABLE I: Average processing time per sample for each stag§smonstrate that the proposed SSL method manages to detect

of the vision algorithms obstacles even without having to move.
Optical Corner Corner Flow Sum
Flow Detection | Tracking | Fitting 2000 —* .
Time (ms) 1.2241 0.3794 | 0.4081| 2.0116 —é
SSL Distribution Extraction Sum 1500 3 1
Time (ms) 0.8503 0.8503 W
, "1000 ]
w
500 1

B. Results of roughness estimate while navigating

We flew an MAV in the indoor flight arena with vari-
ous obstacles and evaluated whether the obstacles can
localized based on the vision outputs. Fig. 5 presents tt
obstacles detection using the roughness on images taken
from the on-board camera. This figure illustrates that both
roughness estimates from optical floe/) and appearance
(é) are higher when there is an obstacle than when there is
no obstacle on the landing surface. The result shows that the 1 2 3
algorithm introduced in [24] and the proposed algorithm in

th|S paper manage to deteCt the ObStaC|eS and thus |den% 6: Comparison Of roughness estima‘tégrom Optica'
safe spots to land. flow algorithm plack ling and ¢ from SSL method red
line) while hovering. Images at the bottom were taken from
three different waypoints where the MAV hovered at the time
indicated by 1, 2, and 3 during the experiments. Images 1
and 3 consist oblue and yellow chairs, respectively while
image 2 does not have obstacle.

80r

D. Results of roughness estimate during outdoor flight

Besides using ‘standard’ obstacles like chairs and a#ifici
ground features in the indoor flight tests, we also investigia
this proposed method in an outdoor environment. We flew the
MAV in a place with trees (obstacles) and grass field (safe

Time (s)
Fig. 5: Obstacles detection using vision output while nav;

landing place). The roughnes$ andé estimated from on-
board images are shown in Fig. 7. Although the experiment
was conducted in a windy condition, the obstacles can still
be detected reasonably well for both methods.

igating. Left axis indicates the values of the roughne$s
from optical flow algorithm Black ling and ¢ from SSL
method (ed line), respectively while thdottompart shows
the on-board images withlack and yellow obstacles.

E. Pixel-wise obstacle segmentation

C. Results of roughness estimate while hovering Th_e rqughness value resulting from the optlpal flow pro-
i cessing is global value for obstacle presence in the entire
To show the main advantage of the proposed SSL methqgnage_ This study shows, after SSL, the MAV will not

we hovered the MAV at several waypoints with obstacles anéimy be able to detect obstacle presence, but will even
without obstacle on the ground and examined the roughness

¢ and ¢*. Note that for the landing purpose we only took 2Experiment videohtt ps://goo. gl / Le5HT2



50 ; IV. GENERALIZATION OF THE SSLMETHOD TO

40F [~¢€* 1 DIFFERENT ENVIRONMENTS

30 —¢ There is a main question remaining for the proposed
“w 20 1 method, i.e., how well the learned mapping from visual
o 10 1 appearance to roughness will generalize to different envir
w 0 ments. As in any learning scheme, this depends on the train-

T

| | |
| | | | | |
r ing and test distribution and on the learning method. In orde
- “ H - “ . to be successful, the training and test distribution shdeld
— ‘ ‘ ‘ ‘ ‘ sufficiently similar. In computer vision, this similarityods
1 2 3 4 5 6

) not only depend on the environment, but also on the visual
Time (s) features extracted from the images and how invariant they
Fig. 7: Obstacles detection using vision output during outyre to for instance rotation, scaling, and lighting changes
door flight. Left axis indicates the values of the roughness |, the context of SSL of obstacle appearance, we expect
¢* from optical flow algorithm lglack ling andé from SSL  that features and learning methods can be found that gen-
method (ed line), respectively while thédottompart shows eralize well over different environments and conditionst F
the on-board images with trees and grass field. instance, when we humans look at a Google maps image,
we can discern obstacles such as trees and buildings rather
well from areas that are more suitable for landing such

be capable of pixel-wise obstacle segmentation. The ba&l§ grass fields. Such a classification performance is also
for this capability is thdocal nature of the image patchesWithin reach of computer vision methods [34]. Of course,
involved in the construction of the texton distribution. the computationally efficient texton distributions and jsien

To show this, a sub-image with window size 6 x learning methods used for our proof-of-principle are quite
50 pixels of an image was moved across-axis of the Iimited.. However, evena limited generalization to a vispal
image for each line inyj—axis with increment oft pixels Very different enV|ronment does .not have to pose a problem
until it covered the whole image. For each sub-image, th8 SSL. Two strategies are available to deal with this: (1)

texton distribution was formed using) image patches and continuously learn the mapping when the MAV is moving
mapped to a roughness value with the regression functiiough with respect to the visual scene, and (2) detecting
discussed above. Fig. 8 shows two still images (top) an§nen the learned mapping is receiving different inputs and
the corresponding regression results. The obstacleslycleaf€NCc€ producing uncertain outputs. If the estimated ostput
have a higher value in the regression maps (scaled to imag§ Uncertain, the MAV can rely again on optical flow and
size for viewing convenience). Note that this method with #dapt its mapping to the new environment. In this section, we
moving window is used to show that our approach can alsg'oW that the uncertainty of outputs in a visually different
accurately segment the obstacles in an image. However it§§vironment can be evaluated with a Naive Bayes classifier

computationally expensive since it processes almost evef?d Shannon entropy.
pixel in the image, and we actually do not need all they, Naive Bayes Classifier
detailed information unless we need to land on a narrow

- Given a distribution of: textons ¢ = (¢1,...,¢,)) to be
place. Therefore, for the appl|(;at|on on MAV, we us_ed Onlyclassified, the Naive Bayes classifier fopossible classes is
one large window 60 x 120 pixels) located at the image

nter given as in (7). In this study, we have two classks=(2),
center. i.e. presence and absence of an obstacle, each of which can
be represented by a distribution of= 30 textons.

_ - ST Hp(qiwk) |
=1
To create a Naive Bayes classifier, we first assign a

roughness threshold;;, (= 20) to classify the distributions
based on its corresponding roughneésnto two classes
labeledC; for obstacle (ife > ¢;;,) or Cy for non-obstacle
(if € < ép). Based on this dataset, learning of the Naive
Bayes classifier was performed usipgools [33].

Fig. 8: Obstacle localization using roughnesgrom SSL
method. This figure shows images with obstaclep (eff _ _ ) _
and without obstacletdp right) and roughness mapsdt- The MAV was flown in two visually different environ-

tom) for both images. Thdight yellow color in roughness Ments (E1 and E2) in which one different obstacle was
map represents the presence of obstacles. placed as shown in Fig. 9. By following the procedure in
Section lll, a regression model was trained in E1 and then

the texton distributions were logged for E1 and E2 by flying

B. Analysis on Two Different Environments



the drone over the obstacles repeatedly. Here, we invistigaespectively from a total number of the test data,;. The

how well the regression model trained in E1 performs irerrors on test sets for E1 and E2 dré673% and11.3697%,

E2. Please note that despite the use of a similar object (@spectively. This error evaluates the dataset by theifiass
chair), the environments are visually very different (tha@ic  without considering the class prior. The error is higher for
being dark in E1 and bright in E2, the surface being grey ithe test set in E2, thus indicating that the generalizaton t
E1l and dark blue in E2). Fig. 10 plots the roughness witk2 is indeed more difficult than the generalization to El's
ground truth position of the obstacle in E2. In this figuretest set.

the ground truth positions of the obstacle are representedThe uncertainty of the Naive Bayes classification can be
by the square boxes on the top of the figure where blagkodeled with the Shannon entropy (8).

areas indicate full visibility of the obstacle in the field of

view of the camera while half visibility is shown using gray H = Zp(ck\q) log, (p(Cr|q)) (8)
areas. It is a rather surprising observation that the Iearne =1

model aCtua”y remains quite effective even when ﬂy|ng in % the top part of F|g 11 and F|g 12' the red line is the
different environment. AIthough based on this result thsre roughness_ In the bottom part of these figuresl the blue
0bViOUS|y some generalization, it would be better to raatra line shows the uncertainty of the Outputs from the Naive
the model to adapt the new environment. Bayes classifier with the Shannon entropy. In Fig. 11, the
80% of the distributions in the E1 are used to train the NaiV@ncertainty can be observed at the edges of the obstacles. It
is reasonable as only a very small part of the obstacle was
captured in the image. In Fig. 12, the entropy gives a more
continuous uncertainty of the outputs due to the difference
in visual appearance in E2. There is one part (e.@5atto

30s) where they both agree with their outputs because the
field of view of the camera consists of largely the same gray
ground on the right side of test field (see Fig. 9). By using
this information, the MAV is able to detect the change of
environment and trigger the optical flow approach to rentrai
the linear regression model so that it can adapt itself to the
new environment.

100

80
(b) Environment 2 (E2) 60

Fig. 9: Images of two different environments stitched usingw 40
on-board images 20

0

2007 0. 8:
= &l 5 ] 5 &l 5§l 5 5] (5§ IO4I|1H I I ‘I |I | h
150¢ g 0

5 10 15 20 %_5 30 35 40 4550 55
: ime (s)
<w100r Fig. 11: Uncertainty measure I-bcétton) and roughness

estimatee (top) in E1.

50¢
; 100
0=0 20 30 40 50 60 70 80
Time (s) 60
Fig. 10: Roughness estimatein E2 using the regression ‘% 4
model trained in E1 and ground truth position of the obstacle 20
indicated by the square boxe®y) in which theblack and
gray areas represent full and half visibility of the obstacle, 0

respectively. 0.8

T 04
Bayes classifier and the rest of the distributions are used fo 0 5 10 15 20 25 3035 40 45 50 55
testing purpose. Both test sets from E1 and E2 are tested on Time (s)

the Naive Bayes classifier and the classification etfor; ~ Fig. 12: Uncertainty measure Hodtton) and roughness
are computed usingrr = (FP+ FN)/(n.s), whereF P estimatee (top) in E2.
and F'N are the number of false positive and false negative,



V. CONCLUSIONS

We have introduced a novel setup for SSL, in which for
the first time optical flow provides the supervised outputd16]
The surface roughness from the optical flow algorithm
allows obstacle detection and safe landing spot selection
when the MAV has lateral movement. A linear function isl17]
learned that maps texton distributionseto We have shown
that ¢ from SSL does not only manage to detect, but even
segment obstacles, without having to move. Both methodtf]
led to successful landings in indoor experiments with ad®arr
AR drone running all vision on-board. Additionally, we have
investigated the generalization of the SSL method to differ [19]
environments using a Naive Bayes classifier and Shannon
entropy. Our future work will focus on: (1) re-training the
model when detecting uncertain output, (2) examining thi0l
effect of height on the roughness, and (3) developing landin
strategies based on the roughness for MAVs as estimated
with appearance features. [21]

[15]
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