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Abstract— We introduce a novel setup of self-supervised
learning (SSL), in which optical flow provides the supervised
outputs. Optical flow requires significant movement for obstacle
detection. The main advantage of the introduced method
is that after learning, a robot can detect obstacles without
moving - reducing the risk of collisions in narrow spaces. We
investigate this novel setup of SSL in the context of a Micro
Air Vehicle (MAV) that needs to select a suitable landing place.
Initially, when the MAV flies over a potential landing area, the
optical flow processing estimates a ‘surface roughness’ measure,
capturing whether there are obstacles sticking out of the landing
surface. This measure allows the MAV to select a safe landing
place and then land with other optical flow measures such
as the divergence. During flight, SSL takes place. For each
image a texton distribution is extracted (capturing the visual
appearance of the landing surface in sight), and mapped to the
current roughness value by a linear regression function. We first
demonstrate this principle to work with offline tests involving
images captured on board an MAV, and then demonstrate the
principle in flight. The experiments show that the MAV can
land safely on the basis of optical flow. After learning it can also
successfully select safe landing spots in hover. It is even shown
that the appearance learning allows the pixel-wise segmentation
of obstacles.

I. INTRODUCTION

For many missions, Micro Air Vehicles (MAVs) will have
to land autonomously. Therefore, MAVs need to identify a
safe place which is defined in this study as a relatively flat
surface with an allowable inclination and most importantlyit
is free of any obstacles underneath the vehicle. Many existing
approaches use active sensors such as a laser range finder
or use multiple cameras [1], [2], [3], [4], [5] to estimate
the distance to many points on the landing surface. While
they can provide accurate and redundant measurements, their
perception range is limited and they are heavy and costly for
small MAVs. Therefore, use of a monocular camera is prefer-
able as it is light-weight and has low power consumption.

The current approaches using a single camera for au-
tonomous landing are mainly visual Simultaneous Localiza-
tion and Mapping (SLAM) and bio-inspired solutions using
optical flow. The first method locates all the desired features
in the field of view [6], [7] and determines the vehicle’s
location and 3D-structure of the landing surface at these
points. Although its computational efficiency and accuracy
have been improved over the years [8], [9], it still uses
more computational resources than strictly necessary. The
second method is inspired by flying insects, which heavily
rely on optical flow for navigation. Biologists first found that
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Fig. 1: Overview of the novel self-supervised learning (SSL)
setup. The MAV starts flying using a roughness measureǫ∗

extracted from optical flow (left). A function is learned that
maps appearance features from astill image to the roughness
ǫ̂ (right). After learning, the MAV can determine whether
there are obstacles below based on a still image, allowing
landing site selection in hover.

honeybees perform a grazing landing by keeping the ventral
flow (lateral velocities divided by height) constant [10], [11],
[12], [13]. This approach guarantees a soft landing but does
not control its vertical dynamics. To deal with that, recent
studies proposed to use time-to-contact (height divided by
vertical velocity) [14], [15], [16].

Indeed, the bio-inspired approach using optical flow is
currently a major research topic in autonomous landing of
MAVs [17], [18], [19]. However, in order to sense the obsta-
cles with optical flow during landing, the vehicle obviously
needs to move. It would be both safer and more efficient to
detect the obstacles underneath the vehicle in hover.

A possible solution for this is to learn the visual appear-
ance of the obstacles, preferably without human supervision.
Self-supervised learning(SSL) can be used to this end.
Previous work focused on autonomous driving cars, where
stereo vision, laser scanners, or bumpers provided supervised



outputs to learn the appearance of obstacles on the road [20],
[21]. In [22], optical flow was used for tracing back the
obstacles in time when they are far away. The supervised
outputs were still provided by stereo vision and bumpers.

Here we propose using optical flow for the SSL of obstacle
appearances to identify a safe landing place for MAVs. An
overview of the proposed method is shown in Fig. 1. The
major difference with previous work on SSL is that it is the
first time optical flow is used for generating the supervised
outputs. Additionally, it is applied to a flying vehicle that
moves in 3-D space and thus has a completely different
viewpoint than the cars in previous research[20], [21], [22].
This heavily reduces the prior on where obstacles can be
located.

We will show that this novel setup of SSL permits an MAV
to start flying with optical flow based behaviors (necessitating
movement), but that after a while it can land completely
based on the visual appearance of obstacles in still images
(in hover). The remainder of the article is set up as follows:
In Section II, we describe the proposed vision algorithm
estimating surface roughness (ǫ∗ and ǫ̂) to detect obstacles.
Section III presents the results and discussion of both optical
flow- and appearance- based landing experiments. Then,
Section IV explains generalization of our SSL method to
different environments. Finally, a conclusion with future
works is drawn in Section V.

II. SELF-SUPERVISED LEARNING OF OBSTACLE

APPEARANCE USING OPTICAL FLOW

In this section, we explain (a) a computationally efficient
method to estimate information from the optical flow field,
which will allow the MAV to determine if a landing spot
is safe, and (b) a SSL method of obstacle appearance using
this information.

A. Surface roughness estimation from optical flow field

The vision algorithm we proposed to determine a safe
landing spot is based on early findings in [23]. The algorithm
was developed in previous research [24] to estimate the slope
of the landing surface by assuming that (a) a pinhole camera
model pointing downward is used, (b) the surface in sight
is planar, and (c) the angular rates of the camera can be
measured and used to de-rotate the optical flow. Under these
assumptions, the equation of the optic flow vectors can be
expressed as follows:

u = −ωx + (ωxa+ ωz)x+ ωxby − aωzx
2 − bωzxy, (1)

v = −ωy + ωyax+ (ωyb+ ωz)y − bωzy
2 − aωzxy, (2)

whereu andv are the optical flow vectors inx andy image
coordinates system, respectively shown in Fig. 2.ωx =
Vx/h, ωy = Vy/h, andωz = Vz/h are the corresponding
velocities in X, Y , and Z direction scaled with respect
to the heighth. Slope angles of the surface,α and β are
the arctangent ofa and b, respectively in the equations.
In this work, the sparse corner detection method using
FAST [25], [26] integrated with Lucas-Kanade tracker [27]

is implemented to compute the optical flow. Note that since
the computation of optical flow is not the primary focus of
this paper but rather the concept of using it with SSL, other
methods computing optical flow can also be used.

Fig. 2: Left: A pin hole model.Right: An inclined ground
surface with slopeα.

By re-writing (1) and (2) into matrix form as shown
below, the parameter vectorspu = [pu1, pu2, pu3, pu4, pu5]
and pv = [pv1, pv2, pv3, pv4, pv5] can be estimated using
a maximal likelihood linear least squares estimate within
a robust random sample consensus (RANSAC) estimation
procedure [28]:

u = pu[1, x, y, x
2, xy]T , (3)

v = pv[1, x, y, y
2, xy]T . (4)

The estimated parameters provide important information
for bio-inspired navigation: (a) ventral flow (ωx = pu1, ωy =
pv1), (b) divergence (D , ∂u

∂x
+ ∂v

∂y
= pu2 + pv3), and (c)

time-to-contact (τ = 2/D).
Lastly, the estimation using RANSAC returns the number

of inliers and the fitting error. If there are obstacles sticking
out of the landing surface, their optical flow vectors will not
fit with the second assumption of a planar landing surface.
This leads to a higher fitting error,ǫ∗ which can thus be
interpreted as a measure ofsurface roughness:

ǫ∗ = ǫu + ǫv, (5)

with ǫu and ǫv sum of absolute errors of the RANSAC
estimation in (3) and (4) divided by the number of tracked
corners. Thus, we can useǫ∗ to detect obstacles near the
ground surface by fitting the optical flow field. Note that
(1) and (2) can be simplified by neglecting the second-order
terms if the MAV only moves laterally. Therefore, linear
fitting of the optical flow field can be used. To obtain a
unique solution of either (3) or (4), we need at least three
tracked features.

B. Self-supervised learning of obstacle appearance

Having to move close to obstacles in order to detect them
represents a risk. It would be desirable to detect obstacles
while hovering. To do this, the outputs from optical flow
algorithm can be used as a supervised output for a self-
supervised learning (SSL) method that maps visual appear-
ance features to a roughness value. To illustrate the whole



process flow, an overview of the proposed SSL algorithm
is presented in Fig. 1. Since the left part of the figure has
been described in Section II-A, this section will discuss more
about the right part of the figure.

1) Texton distributions for appearance representation:In
this study the visual appearance is described using thetexton
method [29], based on the extraction of small image patches.
With this method, first adictionary is created consisting of
textons, i.e., the cluster centroids of the small image patches.
For our implementation, we follow our previous work in
[30], and learn the dictionary with Kohonen clustering [31].
After creation of the dictionary, an image’s appearance can
be represented as a texton distribution. To this end, a number
of image patches are randomly extracted from an image and
per patch the closest texton can be added to a corresponding
bin in a histogram. By normalizing it with the number
of patches, a maximum likelihood estimate of the texton
probability distribution is obtained. In previous research, the
texton method has been used to calculate the appearance
variation cue [32] and to learn how to recognize heights and
obstacles [30] but it was never applied to SSL.

Fig. 3: Texton Method: A number of image patches is
randomly selected from an image. The patches are then com-
pared to textons in a dictionary to form a texton probability
distribution of the image.

2) Predicting the roughness value with appearance:Sec-
ondly, we learn the texton distributions representing visual
appearances of obstacle/ non-obstacle surfaces which can be
differentiated by the roughness values from a set of on-board
images. In order to do this, we can use a regression method to
model a relationship between the texton distributions (regres-
sors) and the roughnessǫ∗ (regressand). To show feasibility
and reliability of the relationship, various regression methods
(such as Linear, Ridge, LASSO, Kernel smoother, Pseudo-
inverse, Partial least squares, k-nearest neighbor regressions)
were tried out to perform the learning usingprtools [33]
in MATLAB. A dataset consists of the texton distributions
and the roughnessǫ∗ are randomly sampled to get80%
training set and the rest for test set. Since the results from
the regression methods are almost the same, we only plot the
results of roughnesŝǫ estimated using the Linear, k-nearest

neighbor, and Pseudo-inverse regression methods compared
with the ǫ∗ in Fig. 4 while their normalized Root Mean
Square Errors (RMSE divided by the range of the regressand)
on the test set are∼ 10%.
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Fig. 4: Comparison of the roughnesŝǫ estimated using
linear, k-nearest neighbor (knn), and Pseudo-inverse (pinv)
regression methods with the roughnessǫ∗ estimated from
optical flow algorithm.

Since they all give reasonably good results, the linear
regression method is used for this study, due to its simplicity
and computational efficiency. After obtaining the texton dis-
tributionsq of m number of visual words and the roughness
ǫ∗ for n images, a linear regression model expressed in (6)
can be trained.

f(qi) = ρ1qi1 + ...+ ρmqim + λ, i = 1, ..., n (6)

whereλ is a bias andρ are the regression coefficients, which
are optimized so thatf(q) ≈ ǫ∗.

III. R ESULTS AND DISCUSSION

Before doing the experiment, a learning procedure needs to
be performed: (a) training of a texton dictionary in the MAV
by flying around the landing area, (b) collecting a dataset of
texton distributions computed based on the trained dictionary
and roughnessǫ∗ using optical flow algorithm during the
second flight, and (c) learning the regression model using
the dataset1.

A. Experimental platform and processing time

A Parrot AR.Drone 2.0 is used as a testing platform for
this study. It uses 1GHz 32 bit ARM Cortex A8 processor
and runs Linux operating system. It is equipped with a
downward-looking camera running up to60fps which is of
particular interest to us for the landing purpose.

Instead of using the original Parrot AR.Drone program, an
open-source autopilot software, Paparazzi Autopilot is used
because it allows us to have direct access to the sensors and
control the MAV. We created a computer vision module in
Paparazzi Autopilot to capture and process images on-board
the MAV and test our proposed algorithm in flight tests.

To examine the efficiency of the both algorithms, we
measured the times taken by each process of the algorithms.

1Although we have chosen for this multi-phase learning procedure in this
article, there is no fundamental reason prohibiting the different phases to
be executed simultaneously during operation.



Since these times depend on the number of samples, we
computed the average processing time required for each stage
of both algorithms divided by number of samples used as
shown in Table I. In our experiments, the maximum number
of corners in optical flow algorithm and the number of
samples used in SSL are both set to 25. Note that this value
can be tuned to include more or less information from the
images, however, higher value needs more computational
time. The measured processing times (see Table I) show that
both algorithms are computationally efficient and manage to
be executed on-board the MAV.

TABLE I: Average processing time per sample for each stage
of the vision algorithms

Optical Corner Corner Flow Sum
Flow Detection Tracking Fitting

Time (ms) 1.2241 0.3794 0.4081 2.0116
SSL Distribution Extraction Sum

Time (ms) 0.8503 0.8503

B. Results of roughness estimate while navigating

We flew an MAV in the indoor flight arena with vari-
ous obstacles and evaluated whether the obstacles can be
localized based on the vision outputs. Fig. 5 presents the
obstacles detection using the roughness on images taken
from the on-board camera. This figure illustrates that both
roughness estimates from optical flow (ǫ∗) and appearance
(ǫ̂) are higher when there is an obstacle than when there is
no obstacle on the landing surface. The result shows that the
algorithm introduced in [24] and the proposed algorithm in
this paper manage to detect the obstacles and thus identify
safe spots to land.
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Fig. 5: Obstacles detection using vision output while nav-
igating. Left axis indicates the values of the roughnessǫ∗

from optical flow algorithm (black line) and ǫ̂ from SSL
method (red line), respectively while thebottompart shows
the on-board images withblack andyellow obstacles.

C. Results of roughness estimate while hovering

To show the main advantage of the proposed SSL method,
we hovered the MAV at several waypoints with obstacles and
without obstacle on the ground and examined the roughness
ǫ̂ and ǫ∗. Note that for the landing purpose we only took

into account the presence of an obstacle in the center of the
image. Therefore, we selected the image patches for building
the texton distribution in a160×120 pixel region in the image
center only. Fig.6 shows a comparison between roughness
ǫ∗ from optical flow algorithm and̂ǫ from SSL method
while hovering. This figure shows that the SSL method is
able to detect obstacles by giving higher value ofǫ̂ while
the MAV is hovering above the obstacles. In contrast, the
optical flow algorithm mostly gave faulty classifications due
to the absence of lateral movement although there were some
movements when approaching and leaving the waypoint
which gave higher value ofǫ∗ as shown in Fig.6. The results
demonstrate that the proposed SSL method manages to detect
obstacles even without having to move.2

1 2 3

Time (s)

ǫ
∗
,ǫ̂

ǫ∗

ǫ̂

0 10 20 30 40 50 60

0

500

1000

1500

2000

1 2 3

Fig. 6: Comparison of roughness estimatesǫ∗ from optical
flow algorithm (black line) and ǫ̂ from SSL method (red
line) while hovering. Images at the bottom were taken from
three different waypoints where the MAV hovered at the time
indicated by 1, 2, and 3 during the experiments. Images 1
and 3 consist ofblue and yellow chairs, respectively while
image 2 does not have obstacle.

D. Results of roughness estimate during outdoor flight

Besides using ‘standard’ obstacles like chairs and artificial
ground features in the indoor flight tests, we also investigated
this proposed method in an outdoor environment. We flew the
MAV in a place with trees (obstacles) and grass field (safe
landing place). The roughnessǫ∗ and ǫ̂ estimated from on-
board images are shown in Fig. 7. Although the experiment
was conducted in a windy condition, the obstacles can still
be detected reasonably well for both methods.

E. Pixel-wise obstacle segmentation

The roughness value resulting from the optical flow pro-
cessing is aglobal value for obstacle presence in the entire
image. This study shows, after SSL, the MAV will not
only be able to detect obstacle presence, but will even

2Experiment video:https://goo.gl/Le5HT2
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Fig. 7: Obstacles detection using vision output during out-
door flight. Left axis indicates the values of the roughness
ǫ∗ from optical flow algorithm (black line) and ǫ̂ from SSL
method (red line), respectively while thebottompart shows
the on-board images with trees and grass field.

be capable of pixel-wise obstacle segmentation. The basis
for this capability is thelocal nature of the image patches
involved in the construction of the texton distribution.

To show this, a sub-image with window size of50 ×
50 pixels of an image was moved acrossx−axis of the
image for each line iny−axis with increment of4 pixels
until it covered the whole image. For each sub-image, the
texton distribution was formed using50 image patches and
mapped to a roughness value with the regression function
discussed above. Fig. 8 shows two still images (top) and
the corresponding regression results. The obstacles clearly
have a higher value in the regression maps (scaled to image
size for viewing convenience). Note that this method with a
moving window is used to show that our approach can also
accurately segment the obstacles in an image. However it is
computationally expensive since it processes almost every
pixel in the image, and we actually do not need all the
detailed information unless we need to land on a narrow
place. Therefore, for the application on MAV, we used only
one large window (160 × 120 pixels) located at the image
center.

 

 

 

 

Fig. 8: Obstacle localization using roughnessǫ̂ from SSL
method. This figure shows images with obstacles (top left)
and without obstacle (top right) and roughness maps (bot-
tom) for both images. Thelight yellow color in roughness
map represents the presence of obstacles.

IV. GENERALIZATION OF THE SSL METHOD TO

DIFFERENT ENVIRONMENTS

There is a main question remaining for the proposed
method, i.e., how well the learned mapping from visual
appearance to roughness will generalize to different environ-
ments. As in any learning scheme, this depends on the train-
ing and test distribution and on the learning method. In order
to be successful, the training and test distribution shouldbe
sufficiently similar. In computer vision, this similarity does
not only depend on the environment, but also on the visual
features extracted from the images and how invariant they
are to for instance rotation, scaling, and lighting changes.

In the context of SSL of obstacle appearance, we expect
that features and learning methods can be found that gen-
eralize well over different environments and conditions. For
instance, when we humans look at a Google maps image,
we can discern obstacles such as trees and buildings rather
well from areas that are more suitable for landing such
as grass fields. Such a classification performance is also
within reach of computer vision methods [34]. Of course,
the computationally efficient texton distributions and simple
learning methods used for our proof-of-principle are quite
limited. However, even a limited generalization to a visually
very different environment does not have to pose a problem
in SSL. Two strategies are available to deal with this: (1)
continuously learn the mapping when the MAV is moving
enough with respect to the visual scene, and (2) detecting
when the learned mapping is receiving different inputs and
hence producing uncertain outputs. If the estimated outputs
are uncertain, the MAV can rely again on optical flow and
adapt its mapping to the new environment. In this section, we
show that the uncertainty of outputs in a visually different
environment can be evaluated with a Naive Bayes classifier
and Shannon entropy.

A. Naive Bayes Classifier

Given a distribution ofn textons (q = (q1, . . . , qn)) to be
classified, the Naive Bayes classifier fork possible classes is
given as in (7). In this study, we have two classes (k = 2),
i.e. presence and absence of an obstacle, each of which can
be represented by a distribution ofn = 30 textons.

p(Ck|q1, . . . , qn) ∝ p(Ck)
n∏

i=1

p(qi|Ck) (7)

To create a Naive Bayes classifier, we first assign a
roughness threshold,̂ǫth (= 20) to classify the distributions
based on its corresponding roughness,ǫ̂ into two classes
labeledC1 for obstacle (ifǫ̂ > ǫ̂th) or C2 for non-obstacle
(if ǫ̂ < ǫ̂th). Based on this dataset, learning of the Naive
Bayes classifier was performed usingprtools [33].

B. Analysis on Two Different Environments

The MAV was flown in two visually different environ-
ments (E1 and E2) in which one different obstacle was
placed as shown in Fig. 9. By following the procedure in
Section III, a regression model was trained in E1 and then
the texton distributions were logged for E1 and E2 by flying



the drone over the obstacles repeatedly. Here, we investigate
how well the regression model trained in E1 performs in
E2. Please note that despite the use of a similar object (a
chair), the environments are visually very different (the chair
being dark in E1 and bright in E2, the surface being grey in
E1 and dark blue in E2). Fig. 10 plots the roughness with
ground truth position of the obstacle in E2. In this figure,
the ground truth positions of the obstacle are represented
by the square boxes on the top of the figure where black
areas indicate full visibility of the obstacle in the field of
view of the camera while half visibility is shown using gray
areas. It is a rather surprising observation that the learned
model actually remains quite effective even when flying in a
different environment. Although based on this result thereis
obviously some generalization, it would be better to re-train
the model to adapt the new environment.
80% of the distributions in the E1 are used to train the Naive

(a) Environment 1 (E1)

(b) Environment 2 (E2)

Fig. 9: Images of two different environments stitched using
on-board images
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Fig. 10: Roughness estimatêǫ in E2 using the regression
model trained in E1 and ground truth position of the obstacle
indicated by the square boxes (top) in which theblack and
gray areas represent full and half visibility of the obstacle,
respectively.

Bayes classifier and the rest of the distributions are used for
testing purpose. Both test sets from E1 and E2 are tested on
the Naive Bayes classifier and the classification error,Err
are computed usingErr = (FP +FN)/(ntest), whereFP
andFN are the number of false positive and false negative,

respectively from a total number of the test data,ntest. The
errors on test sets for E1 and E2 are4.6673% and11.3697%,
respectively. This error evaluates the dataset by the classifier
without considering the class prior. The error is higher for
the test set in E2, thus indicating that the generalization to
E2 is indeed more difficult than the generalization to E1’s
test set.

The uncertainty of the Naive Bayes classification can be
modeled with the Shannon entropy (8).

H =

2∑

k=1

p(Ck|q) log2(p(Ck|q)) (8)

In the top part of Fig. 11 and Fig. 12, the red line is the
roughness. In the bottom part of these figures, the blue
line shows the uncertainty of the outputs from the Naive
Bayes classifier with the Shannon entropy. In Fig. 11, the
uncertainty can be observed at the edges of the obstacles. It
is reasonable as only a very small part of the obstacle was
captured in the image. In Fig. 12, the entropy gives a more
continuous uncertainty of the outputs due to the difference
in visual appearance in E2. There is one part (e.g. at25s to
30s) where they both agree with their outputs because the
field of view of the camera consists of largely the same gray
ground on the right side of test field (see Fig. 9). By using
this information, the MAV is able to detect the change of
environment and trigger the optical flow approach to re-train
the linear regression model so that it can adapt itself to the
new environment.
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Fig. 11: Uncertainty measure H (bottom) and roughness
estimatêǫ (top) in E1.
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Fig. 12: Uncertainty measure H (bottom) and roughness
estimatêǫ (top) in E2.



V. CONCLUSIONS

We have introduced a novel setup for SSL, in which for
the first time optical flow provides the supervised outputs.
The surface roughnessǫ∗ from the optical flow algorithm
allows obstacle detection and safe landing spot selection
when the MAV has lateral movement. A linear function is
learned that maps texton distributions toǫ∗. We have shown
that ǫ̂ from SSL does not only manage to detect, but even
segment obstacles, without having to move. Both methods
led to successful landings in indoor experiments with a Parrot
AR drone running all vision on-board. Additionally, we have
investigated the generalization of the SSL method to different
environments using a Naive Bayes classifier and Shannon
entropy. Our future work will focus on: (1) re-training the
model when detecting uncertain output, (2) examining the
effect of height on the roughness, and (3) developing landing
strategies based on the roughness for MAVs as estimated
with appearance features.
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